Anomalous Behaviour Detection Using Spatiotemporal Oriented Energies, Subset Inclusion Histogram Comparison and Event-Driven Processing
نویسندگان
چکیده
This paper proposes a novel approach to anomalous behaviour detection in video. The approach is comprised of three key components. First, distributions of spatiotemporal oriented energy are used to model behaviour. This representation can capture a wide range of naturally occurring visual spacetime patterns and has not previously been applied to anomaly detection. Second, a novel method is proposed for comparing an automatically acquired model of normal behaviour with new observations. The method accounts for situations when only a subset of the model is present in the new observation, as when multiple activities are acceptable in a region yet only one is likely to be encountered at any given instant. Third, event driven processing is employed to automatically mark portions of the video stream that are most likely to contain deviations from the expected and thereby focus computational efforts. The approach has been implemented with real-time performance. Quantitative and qualitative empirical evaluation on a challenging set of natural image videos demonstrates the approach’s superior performance relative to various alternatives.
منابع مشابه
Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملToshiba at TRECVID 2008: Surveillance Event Detection Task
In this paper, we describe the Toshiba event detection system for TRECVID surveillance event detection task [1] that detects three TRECVID required events (E05:PersonRuns, E19:ElevatorNoEntry, and E20:OpposingFlow). Our system (“Toshiba_1 p-cohog_1”) consists of four components: (1) robust change detection based on the combination of pixel intensity histogram, PTESC (Peripheral TErnary Sign Cor...
متن کاملPedestrian detection using HoG features
Human Detection in Images is a contemporary Computer Vision problem, still welcoming improved solutions. This subset area of object detection has seen many attempts made towards efficient implementation and in this project proposal we describe one based on Histogram of Oriented Gradients which proves to be superior than the rest in terms of both Detection rate and Error rate when using a Linear...
متن کاملEvent Detection in Twitter Using Text and Image Fusion
In this paper, we describe an accurate and effective event detection method to detect events from Twitter stream. It detects events using visual information as well as textual information to improve the performance of the mining. It monitors Twitter stream to pick up tweets having texts and photos and stores them into database. Then it applies mining algorithm to detect the event. Firstly, it d...
متن کاملAnomaly Extraction Using Association Rule Mining
Today network security, uptime and performance of network are important and serious issue in computer network. Anomaly is deviation from normal behavior which is factor that affects on network security. So Anomaly Extraction which detects and extracts anomalous flow from network is requirement of network operator. Anomaly extraction refers to automatically finding in a large set of flows observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010